89 research outputs found

    Clinical features and multidisciplinary approaches to dementia care

    Get PDF
    Dementia is a clinical syndrome of widespread progressive deterioration of cognitive abilities and normal daily functioning. These cognitive and behavioral impairments pose considerable challenges to individuals with dementia, along with their family members and caregivers. Four primary dementia classifications have been defined according to clinical and research criteria: 1) Alzheimer’s disease; 2) vascular dementias; 3) frontotemporal dementias; and 4) dementia with Lewy bodies/Parkinson’s disease dementia. The cumulative efforts of multidisciplinary healthcare teams have advanced our understanding of dementia beyond basic descriptions, towards a more complete elucidation of risk factors, clinical symptoms, and neuropathological correlates. The characterization of disease subtypes has facilitated targeted management strategies, advanced treatments, and symptomatic care for individuals affected by dementia. This review briefly summarizes the current state of knowledge and directions of dementia research and clinical practice. We provide a description of the risk factors, clinical presentation, and differential diagnosis of dementia. A summary of multidisciplinary team approaches to dementia care is outlined, including management strategies for the treatment of cognitive impairments, functional deficits, and behavioral and psychological symptoms of dementia. The needs of individuals with dementia are extensive, often requiring care beyond traditional bounds of medical practice, including pharmacologic and non-pharmacologic management interventions. Finally, advanced research on the early prodromal phase of dementia is reviewed, with a focus on change-point models, trajectories of cognitive change, and threshold models of pathological burden. Future research goals are outlined, with a call to action for social policy initiatives that promote preventive lifestyle behaviors, and healthcare programs that will support the growing number of individuals affected by dementia

    From phase drift to synchronisation – pedestrian stepping behaviour on laterally oscillating structures and consequences for dynamic stability

    Get PDF
    AcceptedJournal ArticleThis is the final version of the article. Available from Elsevier via the DOI in this record.© 2016 The AuthorsThe subject of this paper pertains to the contentious issue of synchronisation of walking pedestrians to lateral structural motion, which is the mechanism most commonly purported to cause lateral dynamic instability. Tests have been conducted on a custom-built experimental setup consisting of an instrumented treadmill laterally driven by a hydraulic shaking table. The experimental setup can accommodate adaptive pedestrian behaviour via a bespoke speed feedback control mechanism that allows automatic adjustment of the treadmill belt speed to that of the walker. 15 people participated in a total of 137 walking tests during which the treadmill underwent lateral sinusoidal motion. The amplitude of this motion was set from 5 to 15 mm and the frequency was set from 0.54 to 1.1 Hz. A variety of stepping behaviours are identified in the kinematic data obtained using a motion capture system. The most common behaviour is for the timing of footsteps to be essentially unaffected by the structural motion, but a few instances of synchronisation are found. A plausible mechanism comprising an intermediate state between unsynchronised and synchronised pedestrian and structural motion is observed. This mechanism, characterised by a weak form of modulation of the timing of footsteps, could possibly explain the under-estimation of negative damping coefficients in models and laboratory trials compared with previously reported site measurements. The results from tests conducted on the setup for which synchronisation is identified are evaluated in the context of structural stability and related to the predictions of the inverted pendulum model, providing insight into fundamental relations governing pedestrian behaviour on laterally oscillating structures.Mateusz Bocian was supported by the UK Engineering and Physical Sciences Research Council via the University of Bristol Doctoral Training Account (EP/P50483X) for a part of the work presented in this study. The Wellcome Trust (089367/Z/09/Z) is acknowledged for funding for the experimental setup, through an infrastructure development grant to the Bristol Vision Institute. Professor Alan R. Champneys of the Department of Engineering Mathematics at the University of Bristol is acknowledged for providing comments leading to the improvement of the manuscript

    The landscape of nonlinear structural dynamics: an introduction.

    Get PDF
    Nonlinear behaviour is ever-present in vibrations and other dynamical motions of engineering structures. Manifestations of nonlinearity include amplitude-dependent natural frequencies, buzz, squeak and rattle, self-excited oscillation and non-repeatability. This article primarily serves as an extended introduction to a theme issue in which such nonlinear phenomena are highlighted through diverse case studies. More ambitiously though, there is another goal. Both the engineering context and the mathematical techniques that can be used to identify, analyse, control or exploit these phenomena in practice are placed in the context of a mind-map, which has been created through expert elicitation. This map, which is available in software through the electronic supplementary material, attempts to provide a practitioner's guide to what hitherto might seem like a vast and complex research landscape.This project has arisen from a collaboration between the five UK universities and eight industrial collaborators on the EPSRC ‘Engineering Nonlinearity’ Programme Grant (EPSRC grant no. EP/K003836/1). T.B. is funded by an RAEng/EPSRC Research Fellowship.This is the final version of the article. It was first available from Royal Society Publishing via http://dx.doi.org/10.1098/rsta.2014.040

    Pedestrian-induced vibrations of the Clifton Suspension Bridge, UK

    No full text

    Second Severn Crossing Dynamic Monitoring - Summary of Data Records August 1996 - March 1997

    No full text

    Second Severn Crossing Dynamic Monitoring : Report on Large Amplitude Vibrations on 3/12/96

    No full text
    corecore